
Learning-Based Fast Nonlinear Model
Predictive Control for Custom-Made 3D
Printed Ground and Aerial Robots

Mohit Mehndiratta, Erkan Kayacan, Siddharth Patel, Erdal Kayacan,
and Girish Chowdhary

1 Introduction

In almost all robotic applications, there are always time-varying system dynamics
and/or environmental variations throughout the operation. For instance, off-road
agricultural robots, including fruit picking robots, driverless tractors, and sheep
shearing robots, must be operated on varying soil conditions. Furthermore, there
are always topological challenges, such as bumps and hollows in a field. All these
challenges bring additional uncertainties to the system which can be modeled as
longitudinal and lateral slip variations [17]. Since the performance of a model-
based controller is guaranteed for an accurate mathematical model of the system,
any plant-model mismatch results in suboptimal performance. Therefore, for a guar-
anteed performance from a model-based controller, the aforementioned variations
must be learnt over time, and the controller must adapt itself to the changing condi-
tions autonomously. Another example is mass variations in package delivery prob-
lems of aerial robots. When the total mass of a multi-rotor unmanned aerial vehicle
(UAV) is considered, the payload changes may result in massive variations in its

M. Mehndiratta · S. Patel
Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
e-mail: mohit005@e.ntu.edu.sg; PATE0006@e.ntu.edu.sg

E. Kayacan (�)
Massachusetts Institute of Technology, Cambridge, MA 02139 USA
e-mail: erkank@mit.edu

E. Kayacan
Aarhus University, Department of Engineering, DK-8000 Aarhus C, Denmark
e-mail: erdal@eng.au.dk

G. Chowdhary
University of Illinois at Urbana–Champaign, Champaign, IL, USA
girishc@illinois.edu

© Springer International Publishing AG, part of Springer Nature 2019
S. V. Raković, W. S. Levine (eds.), Handbook of Model Predictive Control,
Control Engineering, https://doi.org/10.1007/978-3-319-77489-3 24

581

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-77489-3_24&domain=pdf
mailto:mohit005@e.ntu.edu.sg
mailto:PATE0006@e.ntu.edu.sg
mailto:erkank@mit.edu
mailto:erdal@eng.au.dk
mailto:girishc@illinois.edu
https://doi.org/10.1007/978-3-319-77489-3_24

582 M. Mehndiratta et al.

dynamic model which will also result in suboptimal performance for a model-based
controller. Motivated by the challenges listed above, our goal is to use an online
learning-based nonlinear model predictive control (NMPC) for systems with uncer-
tain and/or time-varying dynamic models.

As a solution to modeling mismatch problem between the plant to be controlled
and its corresponding mathematical model, adaptation of either controller param-
eters or deployed mathematical model parameters is not a novel idea. In adaptive
control, controller adapts itself systematically to compensate lack of modeling due
to uncertain and/or time-varying parameters. This feature, apparently, exterminates
the effect of parameter uncertainties on the closed-loop system’s performance [7]. A
well-utilized strategy in this area is the adaptive-optimal control, which comprises of
the use of an adaptive controller for stability during the learning phase, followed by
the switch to the main model-based optimal controller that eventually optimizes the
performance. An online switching metric is developed that initiates the switching to
model predictive control (MPC) after gaining enough confidence in the parameter
estimates, as realized in [5, 6]. On the other hand, an alternative learning approach
could be to combine the control with some optimization-based estimation scheme
including predictive filtering and moving horizon estimation (MHE) [1], which is
also the case in this work. These estimators are model-based estimators, which can
incorporate parameter variations along with the state estimation, to learn the un-
certain system parameters online. This learning-based NMPC has been utilized for
numerous robotic applications including constrained path tracking of a mobile robot
in [26], control of a 3 degree of freedom helicopter in [23], control of lateral dynam-
ics of a fixed-wing UAV in [30], control of a quadrotor in [4], teleoperation of an
underwater vehicle in [11], and robust obstacle avoidance in [9, 21].

In addition to MHE, extended Kalman filter (EKF) can also be utilized for online
learning. However, EKF is based on the linearization of the nonlinear system at the
current estimate and is only suitable for unconstrained problems. In other words,
EKF might give irrational estimation results, e.g. less than zero or larger than one
for slip parameters [13, 15, 16, 18]. On the contrary, MHE strategy exploits the
past measurements available over a window and solves an optimization problem to
estimate the system’s states and unknown parameters [22]. Additionally, MHE is a
powerful nonlinear estimator that is not only suitable for non-Gaussian disturbance
but is also competent in handling constraints explicitly [28]. This implies, MHE will
never give irrational estimation results for the aforementioned slip parameters [29].

In this work, the efficacy of the learning-based NMPC is elaborated for the tra-
jectory tracking of two custom-made 3D printed robotic platforms: an off-road agri-
cultural ground vehicle and an aerial robot for package delivery problem. In the
first application, NMPC is utilized for controlling a field robot in an off-road terrain.
Since the ground conditions, including surface quality (loose soil, grass) and ter-
rain topography (uphill and downhill), may change over the time, modeling errors
are induced [14]. As an artifice, nonlinear MHE (NMHE) is employed to learn the
changing operational conditions, so that a better performing NMPC can be realized.
Secondly, an in-flight payload dropping application of a tilt-rotor tricopter UAV is
addressed. With each drop of payload, the total UAV mass varies and this results in

2 Receding Horizon Control and Estimation Methods 583

a plant-model mismatch. Therefore, in order to eliminate this mismatch and hence,
achieve a superior tracking accuracy from NMPC, NMHE is utilized to learn the
UAV mass online. For both the applications, fast NMPC and NMHE solution meth-
ods are incorporated and the test-results are obtained from real-time experiments.

The remaining part of this study is organized as follows: Section 2 illustrates the
receding horizon control and estimation methods in terms of NMPC and NMHE
problem formulations. In Section 3, the leaning-based NMPC-NMHE framework is
demonstrated for the tracking problems of two robotic systems. Finally, the drawn
conclusions are presented in Section 4.

2 Receding Horizon Control and Estimation Methods

In this section, we briefly discuss the optimal control problems (OCPs) of NMPC
and NMHE. For both the OCPs, the considered nonlinear system is modelled as:

ẋ(t) = f
(
x(t),u(t),p

)
, (1)

where x(t) ∈ R
nx , u(t) ∈ R

nu and p(t) ∈ R
np are the state, input, and system param-

eter vectors, respectively, at time t; f(·, ·, ·) : Rnx+nu+np −→ R
nx is the continuously

differentiable state update function and f(0,0,p) = 0 ∀t. The derivative of x with
respect to t is denoted by ẋ ∈ R

nx .
Similarly, a nonlinear measurement model denoted as y(t) can be described with

the following equation:
y(t) = h

(
x(t),u(t),p

)
, (2)

where h(·, ·, ·) : Rnx+nu+np −→R
nx is the measurement function which describes the

relation between the variables of the system model and the measured outputs of the
real-time system.

2.1 Nonlinear Model Predictive Control

NMPC is an advanced, dynamic optimization-based strategy for feedback control
that solely relies on the accuracy of the mathematical model for its optimum perfor-
mance. In NMPC strategy, a parametric OCP is formulated in the form of a least
square function, in order to penalize deviations of predicted system’s trajectory (in-
cluding states and control inputs) from the specified reference. The parametric na-
ture of the OCP is due to its dependence on the current state (measured or estimated).
In addition, to keep the computational burden realizable for a real-time application
(especially for fast robotic systems), the optimization problem is solved over a finite
window, commonly known as prediction horizon (Nc). It may be worth noting that
NMPC typically leads to non-convex optimization problems, in contrast to linear
MPC in which nearly all formulations use convex cost and constraint functions [24].

584 M. Mehndiratta et al.

In NMPC, the dynamic optimization problem is recursively solved for the opti-
mal control inputs, over the given prediction horizon (t j ≤ t ≤ t j+Nc) at each sam-
pling instant. We formulate the following least-square type cost function in discrete
time, which is commonly utilized for tracking applications:

min
xk,uk

1
2

{ j+Nc−1

∑
k= j

(∥
∥
∥xk −xref

k

∥
∥
∥

2

Wx

+
∥
∥
∥uk −uref

k

∥
∥
∥

2

Wu

)
+
∥
∥
∥xNc −xref

Nc

∥
∥
∥

2

WNc

}
(3a)

s.t. x j = x̂ j, (3b)

xk+1 = fd(xk,uk,p), k = j, · · · , j+Nc −1, (3c)

xk,min ≤ xk ≤ xk,max, k = j, · · · , j+Nc, (3d)

uk,min ≤ uk ≤ uk,max, k = j, · · · , j+Nc −1, (3e)

where xk ∈R
nx is the differential state, uk ∈R

nu is the control input and x̂ j ∈R
nx is

the current state estimate; time-varying state and control references are denoted by
xref

k and uref
k , respectively; the terminal state reference is denoted by xref

Nc
; the discrete

time dynamical model is represented by fd(·, ·, ·); Wx ∈ R
nx×nx , Wu ∈ R

nu×nu and
WNc ∈ R

nx×nx are the corresponding weight matrices, which are assumed constant
for simplicity, however, their time-varying formulation can also be included in a
similar manner. Furthermore, xk,min ≤ xk,max ∈R

nx and uk,min ≤ uk,max ∈R
nu specify

the lower and upper bounds on the states and control inputs, respectively.
Once the solution to the OCP (3) at t j is available, the first computed control input

(u j) is applied to the system for a short time period, that typically coincides with the
sampling time [19]. This sampling time has to be kept short enough with respect to
the system’s dynamics, while sufficiently long at the same time to facilitate timely
computation of the optimized solution. Subsequently, a new optimization problem
is solved for the prediction window [t j+1, t j+Nc+1], which itself is moving forward
with time. Due to this shifting property of the prediction window, the NMPC is also
known as receding horizon control technique.

The last expression in (3a) represents the final cost incurred due to the finite
prediction horizon and is generally referred to as the terminal penalty term. This
term is often included in the problem formulation for stability reasons [19]. In ad-
dition, some other stability results include a problem formulation with sufficiently
long horizon [10], an additional prediction horizon and a locally stabilizing control
law [25].

2.2 Nonlinear Moving Horizon Estimation

Typically, MHE is considered as a dual problem of MPC as they exploit the similar
optimization problem structure; despite the fact that MPC predicts the future of
the system, while MHE utilizes the past measurements over an estimation horizon
for state estimation [20, 31]. Moreover, the two main differences of optimization
problem formulation of MHE from MPC are: (i) there is no initial state constraint

2 Receding Horizon Control and Estimation Methods 585

like in (3b), and (ii) the optimization variables are the states and unknown system
parameters, excluding the control inputs as they are already given to the system in
the past.

In a similar manner to NMPC, the NMHE scheme is also formulated using a
least square function to penalize the deviation of estimated outputs

(
h(·, ·, ·)) from

measurements (z). The performance of NMHE also relies on the availability of an
accurate system model, while a mismatch in the form of process noise between
the system model and the real plant may deteriorate the optimal estimation solu-
tion, which eventually may lead to an unstable closed-loop. To address this issue,
a suitable component (arrival cost) is included in the final optimization problem
formulation of NMHE, as done in [20]. The NMHE formulation includes an esti-
mation horizon containing M measurements (zS, · · · ,z j,) taken at time tS < · · ·< t j,

where the length of the horizon is given by TE = t j − tS, and j−M+1
def
= S is taken

for notational convenience. Finally, the discrete time dynamic optimization prob-
lem to estimate the constrained states (x̂) as well as the unknown parameter (p̂) at
time t j using the process model f(·, ·, ·), measurement model h(·, ·, ·) and available
measurements within the horizon, is of the form [20]:

min
x̂k,p̂

{∥
∥
∥
∥
x̂S− x̄S
p̂− p̄L

∥
∥
∥
∥

2

PS

+
j

∑
k=S

‖zk −h(x̂k,uk,p)‖2
V +

j−1

∑
k=S

‖wk‖2
W

}
(4a)

s.t. x̂k+1 = fd(x̂k,uk,p)+wk, k = S, · · · , j−1, (4b)

x̂k,min ≤ x̂k ≤ x̂k,max, k = S, · · · , j, (4c)

p̂min ≤ p̂≤ p̂max, (4d)

where wk represents the added process noise; x̂k,min ≤ x̂k,max and p̂min ≤ p̂max spec-
ify the lower and upper bounds on the estimated state and parameter vectors, respec-
tively; x̄S and p̄S denote the estimated state and parameter values (arrival cost data)
at the start of estimation horizon, i.e., at tS. The weight matrices PS, V , and W are
interpreted as the inverse of the covariance matrices and are evaluated as:

PS = Q
− 1

2
0 =

[
Qx

0 0
0 Qp

0

]− 1
2

, V = R− 1
2 , W = Q− 1

2 =

[
Qx 0
0 Qp

]− 1
2

, (5)

where Q0 is the initial covariance matrix (incorporating state and parameter, both),
R is the measurement noise covariance matrix and Q is the process noise co-
variance matrix. With the above choice of weight matrices, it is assured that the
NMHE scheme results in a maximum-likelihood estimate for the very likely trajec-
tories [31].

The first term in (4a) is generally referred to as the arrival cost. It is incorporated
into the objective function in order to accommodate the effect of past measurements
(before the beginning of estimation horizon), in the current state and parameter es-
timates. This can be interpreted as analogous to terminal penalty term of NMPC
which summarizes the response of the system after the prediction horizon. EKF is
often utilized to update the arrival cost for practical implementation, as also done
in [20].

586 M. Mehndiratta et al.

Another parameter that affects the performance of NMHE is the choice of estima-
tion window length M, which in general is problem-specific. It basically represents
a trade-off between computational liability and estimation accuracy that simultane-
ously grow with M. In the case of small but fast robotic systems, like ground robots
and UAVs, we cannot indefinitely increase M as limited computation power is avail-
able on-board. Moreover, it is not necessarily true that the estimation accuracy al-
ways increases with M, as the plant-model mismatch degrades the significance of
model prediction which adversely affects the estimation performance [19]. That is,
the selection of a too high value of M for the system in which the unknown param-
eter (to be estimated) is radically changing, plant-model anomalies may arise that
eventually may result in deteriorated overall estimation quality.

3 Real-Time Applications

In this section, two real-time robotic applications will be presented to show how we
have addressed the two main problems encountered in NMPC application, which are
lack of modeling and online solution of the nonlinear optimization problem. The ap-
plications include the trajectory tracking problems of the ground and aerial robotic
systems with time-varying dynamic model parameters which are estimated using
NMHE. Owing to the similarities between the optimization problems of NMPC and
NMHE defined in (3) and (4), respectively, we solve them utilizing the direct mul-
tiple shooting method and real-time iteration approach, which is incorporated in
ACADO toolkit [2]. In ACADO toolkit, firstly the optimization problem, in terms
of system equations and constraints, is defined in a C++ environment and then, the
self-contained C codes are obtained using its code generation package [2]. Finally,
these generated C codes can be utilized to run on C/C++ or MATLAB/Simulink
based software platforms.

3.1 Ultra-Compact Field Robot

Firstly, we illustrate NMPC for the trajectory tracking problem of a 3D printed field
robot, operating in an off-road terrain. Since the soil conditions and terrain topog-
raphy may vary over the operation, modeling uncertainties would arise. In order
to tackle these operational uncertainties and hence, achieve optimum control per-
formance, NMHE is utilized to estimate two slip (or traction) parameters, namely,
(α,κ), in addition to performing the state estimation task.

3.1.1 System Description

The 3D printed field robot as shown in Figure 1 has been built utilizing practi-
cal, hands-on experience with various sensors and actuators. A real-time kinematic
(RTK) differential global navigation satellite system (GNSS), i.e., a Septentrio Altus

3 Real-Time Applications 587

Fig. 1: Ulta-compact 3D printed field robot.

APS-NR2 GNNS receiver (Septentrio Satellite Navigation NV, Belgium), is used to
obtain highly accurate positional information, which has a specified position accu-
racy of 0.03 m at a 5-Hz measurements rate. The Trimble network supplies real-time
kinematic correction signals via 4G internet. A gyroscope (PmodGYRO with an ST
L3G4200D, Digilent Inc., USA) is mounted on the body of the robot to measure the
yaw rate of the 3D printed field robot at a rate of 5-Hz with a resolution of 1◦. Four
powerful 12V brushed DC motors with 131 : 1 metal gearboxes (Pololu Corporation,
USA) are used as actuators, and four integrated quadrature encoders for brushed DC
motors (Pololu Corporation, USA) are used to measure the speed of the wheels of
the field robot with an accuracy of 0.05 m/s.

The real-time NMHE and NMPC are implemented and executed on an on-board
computer, i.e., Raspberry Pi 3, which is equipped with Quad Core 1.2 GHz Broad-
com BCM2837 64bit CPU and 1 GB of RAM. The inputs of NMHE are the position,
speed and yaw rate, while the outputs are full state and parameter vectors that are
fed to the NMPC. In addition to the full state and parameter information, NMPC re-
ceives the reference trajectory throughout the prediction horizon and then generates
a control signal, i.e., the desired yaw rate, and sends it to the low-level controller,
i.e., Kangaroo x2 motion controller (Dimension Engineering, USA). Apart from
the desired yaw rate, the low-level controller receives the measured speed informa-
tion from encoders and generates voltage values which are sent to the motor driver
(Sabertooth dual 12A motor driver, Dimension Engineering, USA) to control the
speeds of the DC motors. The low-level controller is executed at a rate of 50-Hz,
which is 10 times more than the high-level controller.

3.1.2 System Model

In this section, we represent the nonlinear system and measurement models of the
field robot according to (1) and (2), respectively. Instead of using the traditional

588 M. Mehndiratta et al.

kinematic model of a mobile robot, an adaptive nonlinear kinematic model, which
is an extension of the traditional model, is derived as the system model of the field
robot in this study. Two traction parameters (α,κ) are added to minimize deviations
between the real-time system and system model. These parameters, i.e., α and κ ,
represent the effective speed and steering of the field robot, respectively. It is noted
that they must be between zero and one, and it is inherently arduous to measure
them. The field robot’s model can be formulated with the following equations:

ẋ = αvcosψ, (6a)

ẏ = αvsinψ, (6b)

ψ̇ = κr, (6c)

where x and y denote the position of the field robot, ψ denotes the yaw angle, v
denotes the speed and r denotes the yaw rate. The state, parameter, input and mea-
surement vectors are, respectively, denoted as follows:

x =
[

x y ψ
]T

, (7)

p =
[

v α κ
]T

, (8)

u = r , (9)

z =
[

x y v r
]T

. (10)

3.1.3 Control Scheme

The control objective is to design NMPC in order to track a predefined trajectory.
The optimized solution as the desired set point is forwarded to the low-level con-
troller, which is a proportional-integral-derivative (PID) controller. The response of
this low-level PID controller is finally given to the motors of the field robot.

3.1.4 Implementation of NMHE

The inputs of NMHE are the position, speed and yaw rate of the field robot as
defined in (10). The outputs of NMHE, the position, yaw angle, speed and traction
parameters, are the full state and parameter vectors (7)-(8). The NMPC requires full
state and parameter as input to generate the desired yaw rate applied to the field
robot; therefore, the full estimated state and parameter values by NMHE are fed to
NMPC.

The NMHE formulation is solved at each sampling instant with the following
constraints on the traction parameters:

0 ≤α ≤ 1, (11a)

0 ≤κ ≤ 1. (11b)

3 Real-Time Applications 589

The standard deviations of the measurements are set to σx = σy = 0.03 m,
σv = 0.05 m/s, σr = 0.0175 rad/s, based on the experimental analysis. Therefore,
the following weighting matrices V , PS and W are used in NMHE design:

V = diag(σ2
x ,σ2

y ,σ2
v ,σ2

r)
−1/2,

= diag(0.032,0.032,0.52,0.01752)−1/2, (12a)

PS =W = diag(x2,y2,ψ2,v2,α2,κ2)−1/2,

= diag(10.02,10.02,0.12,1.02,0.252/2,0.252)−1/2. (12b)

3.1.5 Implementation of NMPC

The NMPC formulation is solved at every sampling instant with the following con-
straints on the input:

−0.1(rad/s)≤ r ≤ 0.1(rad/s). (13)

The state and input references for the field robot are changed online and defined as
follows:

xr = [xr,yr,ψr]
T and ur = rr, (14)

where xr and yr are the position references, rr is the yaw rate reference, and the yaw
angle reference is calculated from the position references as:

ψr = atan2(ẏr, ẋr)+λπ, (15)

where λ describes the desired direction of the field robot (λ = 0 for forward and λ =
1 for backward). If the yaw rate reference, calculated from the reference trajectory,
is used as the input reference, steady state error might occur in case of a mismatch
between the system model and the real system. Therefore, the measured yaw rate is
used as the input reference to penalize the input rate in the objective function.

The weighting matrices Wx, Wu and WNc are selected as follows:

Wx = diag(1,1,1), Wu = 10 and WNc = 10×Wx. (16)

The weighting matrix for the input Wu is set larger than the weighting matrix for
the states Wx, in order to ensure a well-damped closed-loop system behaviour. In
addition, the weighting matrix for the terminal penalty WNc is set 10 times larger than
the weighting matrix for the states Wx. This implies that the last deviations between
the predicted states and their references in the prediction horizon are minimized
in the objective function 10 times more than the previous points in the prediction
horizon. The reason for doing that is the error at the end of the prediction horizon
plays a critical role in terms of the stability of the control algorithm.

If the prediction horizon is large, the computation burden for NMPC increases
unreasonably, such that solving a non-convex optimization problem online will be

590 M. Mehndiratta et al.

infeasible. Moreover, if the prediction horizon is selected to be too small, NMPC
cannot stabilize the system. Therefore, the prediction horizon of the NMPC has to
be large enough in reference to the velocity of the vehicle, in order to obtain a stable
control performance. Since the field robot is a quite slow system, it is not required
to select a very large value for the prediction horizon. Thus, it is set to 3 seconds.

3.1.6 Results

Throughout the real-time experiments, a reference trajectory consisting of straight
and curved lines is tracked by the 3D printed robot, which is controlled employing
the NMPC-NMHE framework. Thus, the performance of the framework can be in-
vestigated for different path geometries. The system has a constant speed, and yaw
rate is the input to the system. The closest point on the reference trajectory to the
3D printed robot is calculated and then, the next 15 points are fed to the NMPC as
reference trajectory due to the fact that the length of the prediction horizon (Nc) is
set to 15.

The control performance of the 3D printed robot is shown in Figure 2. As can be
seen in Figure 2a, the robot is capable of staying on-track throughout the experiment
and tracking the target trajectory accurately. The variation of Euclidean error with
time is shown in Figure 2b and its mean value is approximately 0.0459 m, which is
within the tolerance for an agricultural application.

0 5 10 15 20 25 30
y axis (m)

0

5

10

15

20

25

30

x
ax

is
 (

m
)

Reference
Actual

(a) Reference and actual trajectories

0 50 100 150 200 250 300
Time (s)

0

0.05

0.1

0.15

0.2

E
rr

or
 (

m
)

(b) Euclidean error

Fig. 2: Trajectory tracking control performance.

The performance of NMHE in estimating the yaw angle and traction parame-
ters is shown in Figure 3. NMPC needs full state information to generate a control
signal. The position in x- and y-axes is measured; however, the yaw angle cannot
be measured in practice. Therefore, NMHE estimates the yaw angle, which plays a
very important role in the trajectory tracking performance. As seen in Figure 3a, the
yaw angle has been controlled very accurately. Moreover, the traction parameters
are immeasurable and the constraints on these parameters are defined in (11). It is

3 Real-Time Applications 591

0 50 100 150 200 250 300
Time (s)

-1

0

1

2

3

4

Y
aw

 a
ng

le
 (

ra
d)

Reference
Estimate

(a) Reference and estimated yaw angle

0 50 100 150 200 250 300
Time (s)

0.5

1

 (
.)

Bounds

0 50 100 150 200 250 300
Time (s)

0.5

1

 (
.)

Bounds

(b) Traction parameters

Fig. 3: Estimation performance of NMHE.

important to estimate the traction parameters, because soil conditions can change
over the time. Therefore, the online estimation of the parameters is required to learn
soil conditions and thus, adapt NMPC to the changing working conditions. As can
be seen in Figure 3b, the estimated values are within the bounds. Moreover, it is
observed that the traction parameter estimates stabilize at certain values, so that a
stable trajectory tracking performance is ensured.

The measured and estimated speed of the 3D printed robot is shown in Figure 4a.
NMHE is capable of filtering noisy measurements. Additionally, the control signal,

0 50 100 150 200 250 300
Time (s)

0

0.1

0.2

0.3

0.4

0.5

S
pe

ed
 (

m
/s

)

Measurement
Estimate

(a) Measured and estimated speed

0 50 100 150 200 250 300
Time (s)

-0.2

-0.1

0

0.1

0.2

Y
aw

 r
at

e
(r

ad
/s

)

Measurement
Reference
Bounds

(b) Reference and actual yaw rate

Fig. 4: Speed and yaw rate.

i.e., yaw rate reference, generated by the NMPC is shown in Figure 4b. It is observed
that the NMPC is capable of dealing with the input constraints and the low-level
controller shows a good control performance.

It is necessary to check the optimality of the NMPC-NMHE framework, because
a single quadratic programming iteration at each sampling time instant may result
in a suboptimal solution. Therefore, the Karush-Kuhn-Tucker (KKT) tolerances for

592 M. Mehndiratta et al.

NMHE and NMPC are shown in Figure 5a. The KKT tolerances are very small, but
they are not equal to zero. The reason is that a quadratic program is solved precisely
only for the linear systems, such that the KKT tolerance becomes zero. Moreover,
the low and non-drifting KKT tolerances emphasize that the optimization problems
in the NMHE and NMPC are well defined and properly scaled. The execution times
for the NMHE and NMPC are shown in Figure 5b. Their mean values are 0.2101 ms
and 0.3813 ms, respectively, which implies that the overall computation time for the
NMPC-NMHE framework is around 0.5914 ms.

0 50 100 150 200 250 300
Time (s)

10-4

10-3

10-2

10-1

100

K
K

T
 to

le
ra

nc
e

NMHE
NMPC

(a) KKT Tolerances

0 50 100 150 200 250 300
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

E
xe

cu
tio

n
tim

e
(m

s)

NMHE
NMPC

(b) Execution time

Fig. 5: KKT tolerances and execution times of NMHE and NMPC.

3.2 Tilt-Rotor Tricopter UAV

In this application, we tackle a real-life package delivery problem, where a UAV
takes off with the full payload, tracks a predefined trajectory in 3D, drops each
package to the time-based designated location, and finally, returns to its starting
location with no payload. In this application, the UAV mass is 1.608 kg without any
payload. The dropping mechanism is designed to drop four payloads in the sequence
55 g, 75 g, 77 g, and 86 g, respectively, which makes the total takeoff mass to be
1.901 kg. Considering the total payload of 293 g, it is almost 18% of the total mass
of the UAV. This means a massive change in the model parameters which has to be
handled during the control of the system. In this application, we learn the variations
in the mass online and feed the estimated mass value to the model which is used by
the NMPC.

3 Real-Time Applications 593

3.2.1 System Description

The aerial robot used in this application is a 3D printed tilt-rotor tricopter, as shown
in Figure 6a. It is a custom-made system, which is developed based on the other
Talon tricopter frames available in the market. The frame is customized, such that
it provides flexibility to accommodate all the electronics as needed. The Pixhawk
flight controller is used as the low-level stabilization controller. In addition, the tri-
copter also houses the on-board computer, i.e., Raspberry Pi 3, which serves two
vital functions. One is wireless communication with the ground-station computer,
and the other is controlling the servomotor for the payload drop mechanism.

(a) Actual setup

1

2

3

1

2

3

Ω1

Ω2

Ω3

(b) Coordinate frame and sign conventions

Fig. 6: 3D printed tilt-rotor tricopter UAV.

The mechanism used to hold and drop the payload throughout the flight has two
plates, which are supported at the base of the UAV. Amongst them, one houses the
servomotor, while the other holds the payload blocks to be dropped. A circular gear
mounted on the servomotor drives a linear gear, shown in Figure 7a, that results in
a linear motion. This linear motion pulls the rod attached to the linear gear and thus,

Fig. 7: Payload drop mechanism.

594 M. Mehndiratta et al.

drops the blocks one-by-one in the process. The dropping mechanism is shown in
Figure 7b with an inverted view.

3.2.2 System Model

The tilt-rotor tricopter is considered as a rigid-body having two stationary rotors
and one non-stationary (or tilting) rotor, as shown in Figure 6b. In our configuration,
the two stationary rotors – RR (right rotor) rotating clockwise and LR (left rotor)
rotating counter-clockwise – are placed in the front of the body (CG - centre of
gravity), while the tilting rotor – BR (back rotor) rotating counter-clockwise – is
mounted at the rear part of the body.

3.2.3 Kinematic Equations

The translational and rotational motion, describing position and orientation of the
UAV, are obtained using the transformation from body-fixed frame (FB) to Earth-
fixed frame (FE). They are written as:

⎡

⎣
ẋ
ẏ
ż

⎤

⎦= REB

⎡

⎣
u
v
w

⎤

⎦ ,

⎡

⎣
φ̇
θ̇
ψ̇

⎤

⎦= TEB

⎡

⎣
p
q
r

⎤

⎦ (17)

where x, y, z and φ , θ , ψ are the translational position and rotational attitude, re-
spectively, which are defined in FE ; u, v, w and p, q, r are the translational and
rotational velocities that are defined in FB; REB is the translation transformation ma-
trix between frames FE and FB, while TEB maps the rotational velocity component
from FB to FE . The matrices REB and TEB are given as (c : cos, s : sin, t : tan):

REB =

⎡

⎣
cθcψ sφsθcψ − sψcφ cφsθcψ + sφsψ
cθsψ sφsθsψ + cψcφ cφsθsψ − sφcψ
−sθ sφcθ cφcθ

⎤

⎦ , (18a)

TEB =

⎡

⎣
1 sφ tθ cφ tθ
0 cφ −sφ
0 sφ

cθ
cφ
cθ

⎤

⎦ . (18b)

3.2.4 Rigid-Body Equations

The rigid-body dynamic equations of the tilt-rotor tricopter are derived based on
the Newton-Euler formulation in the body coordinate system, similar to [3]. Within
these equations, the tricopter is assumed to be a point mass, wherein all the forces
and moments act at the CG. The corresponding force and moment equations can be
written as:

3 Real-Time Applications 595

Force Equations

u̇ = rv−qw+gsin(θ)+
1
m

Fx, (19a)

v̇ = pw− ru−gsin(φ)cos(θ)+
1
m

Fy, (19b)

ẇ = qu− pv−gcos(φ)cos(θ)+
1
m

Fz, (19c)

Moment Equations

ṗ =
(1

IxxIzz − I2
xz

)[
{−pq(Ixz)+qr(Iyy − Izz)}Izz−

{qr(Ixz)+ pq(Ixx − Iyy)}Ixz + τx(Izz)− τz(Ixz)
]
, (20a)

q̇ = pr
(Izz − Ixx

Iyy

)
− (r2 − p2)

(Ixz

Iyy

)
+ τy

(1
Iyy

)
, (20b)

ṙ =
(1

IxxIzz − I2
xz

)[
{qr(Ixz)+ pq(Ixx − Iyy)}Ixx−

{−pq(Ixz)+qr(Iyy − Izz)}Ixx + τz(Ixx)− τx(Ixz)
]
, (20c)

where Fx, Fy, Fz, are the total external forces and τx, τy, τz, are the total external
moments acting on the tricopter body in frame FB. In addition, Ixx, Iyy, Izz and Ixz

represent the moments of inertia of the whole tricopter along axes FBx , FBy , FBz and
FBxz , respectively. One may note that unlike a quadrotor UAV, the tilt-rotor tricopter
only has a single plane of symmetry, i.e., along FBxz plane. Therefore, the effect of
asymmetric moment Ixz is explicitly considered in (20), in contrast to what is done
in [3].

3.2.5 External Forces and Moments

The external forces and moments generated by the rotors rotating at a certain angular
velocity Ω are modelled as:

Fi = KF Ω 2
i and τi = Kτ Ω 2

i , (21)

where Fi and τi are the external force and drag-moment generated, respectively. Also,
KF and Kτ are positive intrinsic parameters of the rotor and are commonly known
as the force and drag-moment coefficients, respectively. According to the tilt-rotor
tricopter configuration shown in Figure 6b, the expression for total external force
acting on the tricopter body in FB frame is written as:

Fext =

⎡

⎣
Fx

Fy

Fz

⎤

⎦=

⎡

⎣
0

−F3 sin(μ)
F1 +F2 +F3 cos(μ)

⎤

⎦ , (22)

596 M. Mehndiratta et al.

where μ is the tilting angle of the back rotor. On the other hand, the total external
moment acting on the tricopter platform is the summation of moment due to pro-
peller’s rotation τprop, and the moment due to change in orientation of propeller’s
rotation plane τgyro. The latter is commonly known as gyroscopic moment and can
be written as:

τgyro =
3

∑
n=1

JP(xrate × rn)Ωn, (23)

where JP is propeller’s moment of inertia and rn is the unit reaction vector along
the rotational axis of nth rotor and xrate is the angular velocity vector. Finally, the
expression for total external moment is:

τext = τprop + τgyro, (24)

where

τprop =

⎡

⎣
(F2 −F1)l2

(F3cos(μ))l1 − (F1 +F2)l3 + τ3sin(μ)
τ1 − τ2 − τ3cos(μ)+(F3sin(μ))l1

⎤

⎦ , (25)

τgyro =

⎡

⎣
JP {q(Ω1 −Ω2)−Ω3(cos(μ)q+ sin(μ)r)}

JP {p(Ω2 −Ω1)+ cos(μ)Ω3}
JP {−psin(μ)Ω3}

⎤

⎦ . (26)

Furthermore, the constant intrinsic parameters for the considered tilt-rotor tri-
copter UAV are listed in Table 1. These parameters are either obtained by experi-
ments or by any of the system identification method. In this application, we physi-
cally measured the mass (m) of the UAV (without the payload mass) and the moment
arm lengths (l1, l2, l3). However, for the evaluation of the moment of inertias (I(··))
and thrust (Kf) as well as drag-moment (Kτ) coefficients, simple experiments are
performed; details of which can be referred from [8, 12].

Table 1: Tilt-rotor tricopter intrinsic parameters

Parameter Description Value

m Mass of tricopter UAV 1.608 kg
l1 Moment arm 0.284 m
l2 Moment arm 0.212 m
l3 Moment arm 0.092 m
Ixx Moment of Inertia about FBx 0.016053 kg-m2

Iyy Moment of Inertia about FBy 0.028158 kg-m2

Izz Moment of Inertia about FBz 0.032752 kg-m2

Ixz Moment of Inertia about FBxz 0.029763 kg-m2

Kf Aerodynamic force coefficient 3.76 × 10−5 N-s2

Kτ Aerodynamic drag-moment coefficient 2.56 × 10−6 Nm-s2

3 Real-Time Applications 597

3.2.6 Control Scheme

In contrast to what is done in [27], NMPC in this implementation is designed to
be responsible for tracking a given position trajectory. Based upon the current feed-
back of the other states, optimized solutions for the control inputs in terms of the
total thrust and attitude angles are computed. These optimized solutions are then
passed to the low-level controller as their desired setpoints. Moreover, the low-level
attitude controller is selected as a PID controller (implemented in Pixhawk), which
is designed individually for each axis.

3.2.7 Implementation of NMPC

The state, parameter, control and measurement vectors for the high-level NMPC are
considered to be composed of:

xNMPC = [x,y,z,u,v,w]T , (27)

pNMPC = m, (28)

uNMPC = [Fz,φ ,θ ,ψ]T , (29)

zNMPC = [x,y,z,u,v,w]T . (30)

Additionally, the final nonlinear programming (NLP) formulation for high-level
NMPC also requires the parametrization of the nonlinear model (in translation) with
respect to the three rotational rates namely, p, q and r. Therefore, to obtain the so-
lution of the formulated NLP, the three rotational rates are fed to the NMPC along
with the other states at each sampling instant. Furthermore, the following state and
control nominal values are selected for the parametrization of the state and control
trajectories:

xref = xref
Nc

= [xr,yr,zr,0,0,0]
T , and uref = [mg,−0.0414,0,0]T , (31)

where m and g are the UAV mass and gravitational constant, respectively.
Some constraints are introduced in the definition of NMPC due to the restrictions

put up by the real setup. Typically, these are the input constraints that are imposed
in order to achieve a stable behaviour from the low-level controller:

0.5mg (N) ≤Fz ≤ 1.5mg (N), (32a)

−15 (◦)≤φ ≤ 15 (◦), (32b)

−15 (◦)≤θ ≤ 15 (◦). (32c)

Also, the following weight matrices are selected by trial-and-error:

Wx = diag(25,26,32,1.0,1.0,1.1), (33a)

Wu = diag(0.024,22,25,80), (33b)

WNc = diag(40,40,40,1,1,1). (33c)

598 M. Mehndiratta et al.

Furthermore, the prediction window Nc = 30 is selected to facilitate the real-time ap-
plicability of the control framework. One may note that for defining the constraints
and obtaining NMPC weights, the UAV mass is selected to be the maximum takeoff
mass, i.e., m = 1.901 kg.

3.2.8 Implementation of NMHE

In this application, the main task of NMHE is to estimate the UAV mass (m) online,
which is made time-varying by a sequential drops of payload. The overall state,
parameter, control and measurement vectors for NMHE design are considered to be
composed of:

xNMHE = [u,v,w]T , (34)

pNMHE = m, (35)

uNMHE = [Fz,φ ,θ]T , (36)

zNMHE = [u,v,w,Fz,φ ,θ]T . (37)

One may note that the state vector for NMHE in (34) is different than the state
vector for NMPC in (27). This is because m only appears in the force equations
of (19). Moreover, the three rotational rates are included in the measurements along
with states and inputs in order to solve the underlying NLP, as also done in NMPC.

For the selected tricopter model, the weight matrices PS, V and W are chosen
to be:

PS = diag(5.47722,5.47722,5.47722,8.94432)−1/2, (38a)

V = diag(0.04472,0.04472,0.04472,0.22362,0.12,0.12)−1/2, (38b)

W = diag(0.012,0.03162,0.03162,0.03162)−1/2. (38c)

The above values of the weight matrices are decided based upon experience, incor-
porating the definitions in (5). Additionally, in order to achieve a constrained esti-
mation of the UAV mass, the initial knowledge about the maximum takeoff mass
and the minimum assembly mass is exploited and hence, the following constraints
are imposed:

1.5 (kg) ≤ m ≤ 2.0 (kg). (39)

Furthermore, the estimation window length M is selected to be equal to 70, which
is more than the prediction horizon length of 30 for NMPC. This is purposely kept
in order to realize a slower learning from NMHE.

3 Real-Time Applications 599

3.2.9 Results

In this section, we present the results of the implementation of NMPC for the high-
level position tracking of a tilt-rotor tricopter UAV. In addition to tracking, we also
analyse its robustness for the time-varying dynamics of the system by conducting
experiments for two scenarios: NMPC without learning, and NMPC with learning
(also referred to as NMPC-NMHE framework).

The real-time implementation of the entire process is summarized in Figure 8.
The NMPC and NMHE, which are running at 50-Hz and 30-Hz, respectively, are de-
signed using ‘s-functions’ in Simulink, which are generated via the ACADO toolkit.
The OptiTrack motion capture system, consisting of eight cameras running at 240
frames/sec, is used to get the feedback during experiments. The controller com-
mands along with the feedback (position and orientation) are sent to the UAV via
Raspberry Pi over a wireless network. The low-level controller is running on the
Pixhawk module, which takes the NMPC commands from Raspberry Pi 3 and fur-
ther computes the actuator commands that are finally given to the tricopter motors.
The communication between the UAV and ground-station is achieved through ROS
running on a hardware consisting of Intel R© CoreTMi7-4710MQ CPU@2.50GHz
processor with 15.6 GB of memory on a 64-bit Ubuntu Linux system.

The initial state of the UAV is x(0) = [0,0,1.5,0,0,0]T . In addition to the dis-
cretization of the nonlinear tricopter model utilizing multiple shooting method (im-
plemented in ACADO toolkit), a fixed integration process consisting of 2Nc steps
is also performed based on Runge-Kutta 4th order method. Moreover, a time-based
circular reference trajectory ([xr,yr,1.5]) of radius 1 m is selected for these exper-
iments. In both the scenarios, first a complete circle is performed with full takeoff
mass of the UAV and then, the payload in terms of four blocks are sequentially
dropped (55g → 75g → 77g → 86g) at fixed time-intervals during the trajectory.

Remark I: In the two scenarios – NMPC without learning and NMPC with learn-
ing – analysed here, NMHE in the latter case is only utilized to perform the param-
eter estimation, i.e., only the estimation of mass (m) is fed to NMPC, not the state
values. This is done in order to achieve a consistent comparison between the two
cases.

3.2.10 Circular Reference Tracking

The overall position tracking performance of the UAV for both scenarios can be seen
in Figure 9a and b, where the vertical magenta lines represent the instants of payload
drop. In Figure 9b, one may notice a negative offset along z since the beginning for
the case of NMPC without leaning. The reason for this is the slight mismatch that
exists between the model and the system. Nevertheless, the offset is around 5 cm,
which is reasonable compared to the size of the UAV. Moreover, it is illustrated
from Figure 9a and b that the position tracking of the NMPC-NMHE framework is
better than the NMPC without learning case. The controller’s performance is stable
and especially, the tracking along z is more accurate. This is because NMHE is able

600 M. Mehndiratta et al.

Trajectory
Generation

NMPC
(Position

Controller)

Onboard
Computer

Raspberry Pi3

Pixhawk
(Low-level
Controller)

Tricopter
Dynamics

Motion Capture System
Feedback

State
Estimator

GROUND STATION

N
E
T
W
O
R
K

UAV

∗

∗

∗

∗

(Serial Communication)
MAVROS Ω1

Ω2

Ω3

Visual Feedback
Position

Measurement

Attitude
Measurement

∗

∗

∗

∗

Fig. 8: Schematic diagram for real-time implementation.

to learn the change in UAV mass and thus, the offset created due to mass change
diminishes with time. Also, the Euclidean errors for position tracking in the two
cases are shown in Figure 9c, where their mean value over the entire run time for
NMPC without and with learning are 0.2064 m and 0.1618 m, respectively.

The performance of NMPC can be appreciated by observing its Fz command
throughout the trajectory for both without and with learning cases, as shown in Fig-
ure 10a, where the vertical magenta lines again represent the instants of payload
drop. It is implied that for both the scenarios, the Fz command of NMPC never
crosses the bounds specified in (32a), but gets adjusted at every instant of a payload
drop. Additionally, the attitude angles commanded by NMPC for without and with
learning are given in Figure 10b and c, respectively. It can be seen that φ and θ
angles of the UAV are well within the specified bounds defined in (32b) and (32c),
respectively, while ψ response has some irregularities following the heading com-
mand of NMPC. This behaviour is due to the PID tuning of the Pixhawk’s low-level
controller, but the system is stable enough to maintain the heading.

The performance of NMHE in estimating the mass is shown in Figure 10d, along
with its true value, wherein the estimation is observed to stay within the specified
bounds defined in (39). As NMPC is a model-based controller, a good estimate of
the time-varying model parameters is crucial for its optimum performance. More-
over, in package delivery applications of the UAV that we are considering, the total
mass changes with time. Therefore, it is important to estimate it, so that NMPC can
adapt itself to the changing working conditions. It is worth noting that although m
is a physical parameter in the system model, when it is estimated by NMHE, it also
accommodates the effects of modeling uncertainties that are injected during opera-
tion. Overall, it can be interpreted as an adaptive parameter that facilitates NMPC
to achieve an offset free tracking along z.

3 Real-Time Applications 601

1.4

1

1.5

1

 z
 (

m
)

 y (m)

0

1.6

 x (m)

0
-1 -1

Reference NMPC NMPC-NMHE

(a) Position tracking in 3D space

0 10 20 30 40 50
-1
0
1

 x
 (

m
)

0 10 20 30 40 50
-1
0
1

 y
 (

m
)

0 10 20 30 40 50
Time (s)

1.4
1.5
1.6

 z
 (

m
)

(b) Reference and actual trajectories

0 10 20 30 40 50
Time (s)

0

0.1

0.2

0.3

E
rr

or
 (

m
)

NMPC
NMPC-NMHE

(c) Euclidean error

Fig. 9: Trajectory tracking performance.

In order to check the optimality of NMPC and NMPC-NMHE framework, their
KKT tolerances are obtained and plotted in Figure 11a and b, respectively. As men-
tioned in the previous application, it is necessary to check the optimality of the
solution because a single quadratic programming iteration at each sampling time
instant (performed in ACADO) may result in a suboptimal solution. As visualized
in Figure 11a and b, the KKT tolerances for NMPC and NMHE are small, but not
zero. This is happening due to the nonlinearities in the system dynamics. It is to
be noted that the tilt-rotor tricopter UAV is far more nonlinear and inherently unsta-
ble in comparison to other multirotor UAVs including quadrotors and hexacopters.
This is mainly due to the odd number of rotors, which results in an unbalanced yaw
moment. In addition, one may point out the difference in KKT values for NMPC
and NMHE, and the reason lies in the selection of their prediction and estimation
horizons, respectively. Nonetheless, their low and non-drifting magnitudes still rep-
resent the well-defined and properly scaled optimization problems of both NMPC
without learning and the NMPC-NMHE framework.

Finally, the execution times for each entity in NMPC without learning and
NMPC-NMHE framework are displayed in Figure 12a and b, respectively. In ad-
dition, the combined mean execution times for both without and with learning cases
are 0.7763 ms and 3.7 ms, respectively. These values are less compared to the se-
lected sampling time of 20 ms (position controller) and hence, support the imple-
mentation of both on a cheaper embedded hardware including Raspberry Pi 3.

602 M. Mehndiratta et al.

0 10 20 30 40 50
Time (s)

10

15

20

25

30
 F

z (
N

)
NMPC NMPC-NMHE Bounds

(a) Fz command

0 10 20 30 40 50
-20

0
20

 (
o
) NMPC Measurements Bounds

0 10 20 30 40 50
-20

0

20

 (
o
)

0 10 20 30 40 50
Time (s)

-20
-10

0

 (
o
)

(b) Attitude command of NMPC

0 10 20 30 40 50
-20

0
20

 (
o
) NMPC-NMHE Measurements Bounds

0 10 20 30 40 50
-20

0

20

 (
o
)

0 10 20 30 40 50
Time (s)

-20
-10

0

 (
o
)

(c) Attitude command of NMPC with learning

0 10 20 30 40 50
Time (s)

1.4

1.6

1.8

2

M
as

s
(k

g)

Actual NMHE Bounds

(d) Estimation performance of NMHE

Fig. 10: Controller and estimator outputs.

0 10 20 30 40 50
Time (s)

10 -1

10 0

10 1

K
K

T
 to

le
ra

nc
e

NMPC

(a) NMPC without learning

0 10 20 30 40 50
Time (s)

10 -2

10 0

K
K

T
 to

le
ra

nc
e

NMPC NMHE

(b) NMPC-NMHE framework

Fig. 11: KKT tolerance.

Remark II: The tuning of NMPC weights is a problem that is generally encoun-
tered while performing the experiments. Any minor change in the system including
discharging of the battery leads to a change in the controller weights mainly along
Fz. Moreover, the best way to tune the combined NMPC-NMHE framework is to
first tune the NMPC separately, and then utilize those weights as a reference for the
combined framework.

4 Conclusion 603

0 10 20 30 40 50
Time (s)

0.7

0.8

0.9

1

1.1

1.2
E

xe
cu

tio
n

tim
e

(m
s)

NMPC

(a) NMPC without learning

0 10 20 30 40 50
Time (s)

1

2

3

4

5

6

7

E
xe

cu
tio

n
tim

e
(m

s)

NMPC NMHE

(b) NMPC-NMHE framework

Fig. 12: Execution time.

Remark III: Selecting an appropriate estimation horizon for NMHE is problem
specific as it directly affects the rate of learning. That is, for a shorter horizon, the
mass learning is fast which eventually makes NMPC to be aggressive towards the
change. On the other hand, for longer horizon, the NMHE gradually learns the mass
parameter and hence, a smooth response is obtained from NMPC.

4 Conclusion

We have incorporated NMPC-NMHE framework for the system with uncertainties
including slip variations in the off-road ground robotic vehicle due to the change
in soil conditions and mass variations for the considered package delivery problem
of the aerial robot. Thanks to its learning capability, the accuracy of the NMPC is
enhanced by the estimation of parameters by NMHE in both the applications. The
outcome of the first application, in which we have estimated the soil condition vari-
ations, is that the Euclidean error for the NMPC is about 0.0459 m, which is satis-
factory for any agricultural application. In the presented second application, where
we have estimated the mass of the UAV for a package delivery task, the learning-
based NMPC gives better tracking performance than that of the NMPC without
learning. The average Euclidean error for the learning-based NMPC (0.1618 m) is
less than that of NMPC without learning (0.2064 m). Since the true values of the
mass are known throughout the trajectory, we have also presented the estimation
results versus their true values. Overall, the obtained results from both the applica-
tions imply that the online leaning-based NMPC substantially improves the tracking
performance for the presented robotic applications.

Acknowledgements This research is supported by the National Research Foundation, Prime Min-
ister’s Office, Singapore under its Medium-Sized Centre funding scheme. The information, data,
or work presented herein was funded in part by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000598.

604 M. Mehndiratta et al.

References

1. Allgöwer, F., Badgwell, T.A., Qin, J.S., Rawlings, J.B., Wright, S.J.: Nonlinear Predictive
Control and Moving Horizon Estimation — An Introductory Overview. Springer, London
(1999). https://doi.org/10.1007/978-1-4471-0853-5 19

2. Ariens, D., Houska, B., Ferreau, H., Logist, F.: ACADO: toolkit for automatic control and
dynamic optimization. Optimization in Engineering Center (OPTEC), 1.0beta edn. (2010).
http://www.acadotoolkit.org/

3. Bouabdallah, S.: Design and Control of Quadrotors with Application to Autonomous Flying,
p. 155. EPFL, Lausanne (2007)

4. Bouffard, P., Aswani, A., Tomlin, C.: Learning-based model predictive control on a quadrotor:
onboard implementation and experimental results. In: 2012 IEEE International Conference on
Robotics and Automation (ICRA), pp. 279–284 (2012). https://doi.org/10.1109/ICRA.2012.
6225035

5. Chowdhary, G., Mühlegg, M., How, J.P., Holzapfel, F.: Concurrent Learning Adaptive
Model Predictive Control, pp. 29–47. Springer, Berlin (2013). https://doi.org/10.1007/
978-3-642-38253-6 3

6. Chowdhary, G., Mühlegg, M., How, J.P., Holzapfel, F.: A concurrent learning adaptive-
optimal control architecture for nonlinear systems. In: 52nd IEEE Conference on Decision
and Control, pp. 868–873 (2013). https://doi.org/10.1109/CDC.2013.6759991

7. Eren, U., Prach, A., Koçer, B.B., Raković, S.V., Kayacan, E., Açıkmeşe, B.: Model predictive
control in aerospace systems: current state and opportunities. J. Guid. Control. Dyn. 40(7),
1541–1566 (2017). https://doi.org/10.2514/1.G002507

8. Fum, W.Z.: Implementation of simulink controller design on Iris+ quadrotor. Ph.D. thesis,
Monterey, California, Naval Postgraduate School (2015)

9. Garimella, G., Sheckells, M., Kobilarov, M.: Robust obstacle avoidance for aerial plat-
forms using adaptive model predictive control. In: 2017 IEEE International Conference
on Robotics and Automation (ICRA), pp. 5876–5882 (2017). https://doi.org/10.1109/ICRA.
2017.7989692

10. Grúne, L.: NMPC without terminal constraints. IFAC Proc. Vol. 45(17), 1–13 (2012)
11. Havoutis, I., Calinon, S.: Supervisory teleoperation with online learning and optimal control.

In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1534–1540
(2017)

12. Hoffmann, G.M., Huang, H., Waslander, S.L., Tomlin, C.J.: Quadrotor helicopter flight dy-
namics and control: theory and experiment. In: Proceedings of the AIAA Guidance, Naviga-
tion, and Control Conference, vol. 2, p. 4 (2007)

13. Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Distributed nonlinear model predictive
control of an autonomous tractor-trailer system. Mechatronics 24(8), 926–933 (2014)

14. Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Nonlinear modeling and identification of
an autonomous tractor-trailer system. Comput. Electron. Agric. 106, 1–10 (2014). https://doi.
org/10.1016/j.compag.2014.05.002

15. Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Learning in centralized nonlinear model
predictive control: application to an autonomous tractor-trailer system. IEEE Trans. Control
Syst. Technol. 23(1), 197–205 (2015)

16. Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Robust tube-based decentralized nonlinear
model predictive control of an autonomous tractor-trailer system. IEEE/ASME Trans. Mecha-
tron. 20(1), 447–456 (2015)

17. Kayacan, E., Kayacan, E., Ramon, H., Saeys, W.: Towards agrobots: Identification of the yaw
dynamics and trajectory tracking of an autonomous tractor. Comput. Electron. Agric. 115,
78–87 (2015)

18. Kayacan, E., Peschel, J.M., Kayacan, E.: Centralized, decentralized and distributed nonlinear
model predictive control of a tractor-trailer system: a comparative study. In: 2016 Ameri-

https://doi.org/10.1007/978-1-4471-0853-5_19
http://www.acadotoolkit.org/
https://doi.org/10.1109/ICRA.2012.6225035
https://doi.org/10.1109/ICRA.2012.6225035
https://doi.org/10.1007/978-3-642-38253-6_3
https://doi.org/10.1007/978-3-642-38253-6_3
https://doi.org/10.1109/CDC.2013.6759991
https://doi.org/10.2514/1.G002507
https://doi.org/10.1109/ICRA.2017.7989692
https://doi.org/10.1109/ICRA.2017.7989692
https://doi.org/10.1016/j.compag.2014.05.002
https://doi.org/10.1016/j.compag.2014.05.002

References 605

can Control Conference (ACC), pp. 4403–4408 (2016). https://doi.org/10.1109/ACC.2016.
7525615

19. Kraus, T., Ferreau, H., Kayacan, E., Ramon, H., Baerdemaeker, J.D., Diehl, M., Saeys, W.:
Moving horizon estimation and nonlinear model predictive control for autonomous agricul-
tural vehicles. Comput. Electron. Agric. 98, 25–33 (2013)

20. Kühl, P., Diehl, M., Kraus, T., Schlöder, J.P., Bock, H.G.: A real-time algorithm for moving
horizon state and parameter estimation. Comput. Chem. Eng. 35(1), 71–83 (2011)

21. Liu, Y., Rajappa, S., Montenbruck, J.M., Stegagno, P., Bülthoff, H., Allgöwer, F., Zell, A.: Ro-
bust nonlinear control approach to nontrivial maneuvers and obstacle avoidance for quadrotor
UAV under disturbances. Robot. Auton. Syst. 98, 317–332 (2017). https://doi.org/10.1016/j.
robot.2017.08.011

22. López-Negrete, R., Biegler, L.T.: A moving horizon estimator for processes with multi-rate
measurements: a nonlinear programming sensitivity approach. J. Process Control 22(4), 677–
688 (2012)

23. Mehndiratta, M., Kayacan, E.: Receding horizon control of a 3 DOF helicopter using online
estimation of aerodynamic parameters. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. (2017).
https://doi.org/10.1177/0954410017703414

24. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng.
23(4), 667–682 (1999). https://doi.org/10.1016/S0098-1354(98)00301-9

25. Nicolao, G.D., Magni, L., Scattolini, R.: Stabilizing receding-horizon control of nonlinear
time-varying systems. IEEE Trans. Autom. Control 43(7), 1030–1036 (1998)

26. Ostafew, C.J., Schoellig, A.P., Barfoot, T.D.: Robust constrained learning-based NMPC en-
abling reliable mobile robot path tracking. Int. J. Robot. Res. 35(13), 1547–1563 (2016).
https://doi.org/10.1177/0278364916645661

27. Prach, A., Kayacan, E.: An MPC-based position controller for a tilt-rotor tricopter VTOL
UAV. Optim. Control Appl. Methods https://doi.org/10.1002/oca.2350

28. Rao, C.V., Rawlings, J.B., Mayne, D.Q.: Constrained state estimation for nonlinear discrete-
time systems: stability and moving horizon approximations. IEEE Trans. Autom. Control
48(2), 246–258 (2003). https://doi.org/10.1109/TAC.2002.808470

29. Robertson, D.G., Lee, J.H., Rawlings, J.B.: A moving horizon-based approach for least-
squares estimation. AIChE J. 42(8), 2209–2224 (1996)

30. Shin, J., Kim, H.J., Park, S., Kim, Y.: Model predictive flight control using adaptive sup-
port vector regression. Neurocomputing 73(4), 1031–1037 (2010). https://doi.org/10.1016/j.
neucom.2009.10.002

31. Vukov, M., Gros, S., Horn, G., Frison, G., Geebelen, K., Jørgensen, J., Swevers, J., Diehl, M.:
Real-time nonlinear MPC and MHE for a large-scale mechatronic application. Control Eng.
Pract. 45, 64–78 (2015)

https://doi.org/10.1109/ACC.2016.7525615
https://doi.org/10.1109/ACC.2016.7525615
https://doi.org/10.1016/j.robot.2017.08.011
https://doi.org/10.1016/j.robot.2017.08.011
https://doi.org/10.1177/0954410017703414
https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/10.1177/0278364916645661
https://doi.org/10.1002/oca.2350
https://doi.org/10.1109/TAC.2002.808470
https://doi.org/10.1016/j.neucom.2009.10.002
https://doi.org/10.1016/j.neucom.2009.10.002

	Learning-Based Fast Nonlinear Model Predictive Control for Custom-Made 3D Printed Ground and Aerial Robots
	1 Introduction
	2 Receding Horizon Control and Estimation Methods
	2.1 Nonlinear Model Predictive Control
	2.2 Nonlinear Moving Horizon Estimation

	3 Real-Time Applications
	3.1 Ultra-Compact Field Robot
	3.1.1 System Description
	3.1.2 System Model
	3.1.3 Control Scheme
	3.1.4 Implementation of NMHE
	3.1.5 Implementation of NMPC
	3.1.6 Results

	3.2 Tilt-Rotor Tricopter UAV
	3.2.1 System Description
	3.2.2 System Model
	3.2.3 Kinematic Equations
	3.2.4 Rigid-Body Equations
	3.2.5 External Forces and Moments
	3.2.6 Control Scheme
	3.2.7 Implementation of NMPC
	3.2.8 Implementation of NMHE
	3.2.9 Results
	3.2.10 Circular Reference Tracking

	4 Conclusion
	References

